A Thermus phage protein inhibits host RNA polymerase by preventing template DNA strand loading during open promoter complex formation
نویسندگان
چکیده
RNA polymerase (RNAP) is a major target of gene regulation. Thermus thermophilus bacteriophage P23-45 encodes two RNAP binding proteins, gp39 and gp76, which shut off host gene transcription while allowing orderly transcription of phage genes. We previously reported the structure of the T. thermophilus RNAP•σA holoenzyme complexed with gp39. Here, we solved the structure of the RNAP•σA holoenzyme bound with both gp39 and gp76, which revealed an unprecedented inhibition mechanism by gp76. The acidic protein gp76 binds within the RNAP cleft and occupies the path of the template DNA strand at positions -11 to -4, relative to the transcription start site at +1. Thus, gp76 obstructs the formation of an open promoter complex and prevents transcription by T. thermophilus RNAP from most host promoters. gp76 is less inhibitory for phage transcription, as tighter RNAP interaction with the phage promoters allows the template DNA to compete with gp76 for the common binding site. gp76 also inhibits Escherichia coli RNAP highlighting the template-DNA binding site as a new target site for developing antibacterial agents.
منابع مشابه
Structure of a bacterial RNA polymerase holoenzyme open promoter complex
Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full trans...
متن کاملA non-canonical multisubunit RNA polymerase encoded by the AR9 phage recognizes the template strand of its uracil-containing promoters
AR9 is a giant Bacillus subtilis phage whose uracil-containing double-stranded DNA genome encodes distant homologs of β and β' subunits of bacterial RNA polymerase (RNAP). The products of these genes are thought to assemble into two non-canonical multisubunit RNAPs - a virion RNAP (vRNAP) that is injected into the host along with phage DNA to transcribe early phage genes, and a non-virion RNAP ...
متن کاملThe −11A of promoter DNA and two conserved amino acids in the melting region of σ70 both directly affect the rate limiting step in formation of the stable RNA polymerase-promoter complex, but they do not necessarily interact
Formation of the stable, strand separated, 'open' complex between RNA polymerase and a promoter involves DNA melting of approximately 14 base pairs. The likely nucleation site is the highly conserved -11A base in the non-template strand of the -10 promoter region. Amino acid residues Y430 and W433 on the sigma70 subunit of the RNA polymerase participate in the strand separation. The roles of -1...
متن کاملThe effect of a bacteriophage T4-induced polypeptide on host RNA polymerase interaction with promoters.
After infection of Escherichia coli with bacteriophage T4, the host RNA polymerase acquires several small phage-induced polypeptides (Stevens, A. (1974) Biochemistry 13, 493-503) and its alpha subunits get ADP-ribosylated by a virus-specific enzyme (Zillig, W., Mailhammer, R., Skorko, R., and Rohrer, H. (1977) Curr. Top. Cell. Regul. 12, 263-271). The modified polymerase displays changed enzyma...
متن کاملT7 phage protein Gp2 inhibits the Escherichia coli RNA polymerase by antagonizing stable DNA strand separation near the transcription start site.
Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the host RNA polymerase (RNAP)--a multi-subunit enzyme responsible for gene transcription--by a small ( approximately 7 kDa) phage-encoded protein called Gp2. Gp2 is also a potent inhibitor of E. coli RNAP in vitro. Here we describe the first atomic resolution structure of Gp2, which reveals a distinct run ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 46 شماره
صفحات -
تاریخ انتشار 2018